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 We recently proposed1 that a [pump + plasma] 
optical system can alter the polarization of a 
crossing probe beam
— Introduced “plasma photonics” concepts 

(laser-plasma waveplates/polarizers) 

 An ultrafast high-power tunable plasma 
waveplate has been demonstrated at JLF2

 Wavelength tuning (new capability!) will enable 
the plasma polarizer & other expts on 4-wave 
mixing and crossed-beam energy transfer

Plasma photonics is the manipulation of light using plasma, at 
fluences beyond the damage threshold of conventional optics

2D. Turnbull et al, in preparation (2016)
1P. Michel, L. Divol, D. Turnbull, & J. D. Moody, Phys. Rev. Lett. 102, 205001 (2014)
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refractive index: 
η = η0 + δη
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Fundamental properties of light waves can be modified by 
optical wave-mixing in plasmas

By using wave-mixing, plasmas can be turned into “photonic devices” 
that can sustain extreme laser fluences (>106× traditional optics)

E1

E1∥

E1⊥

“pump” 

k0

k1

“probe”

E0

optical system = 
[plasma + auxiliary 
laser (“pump”)]

probe modified by scattering off the refractive 
index modulation imprinted by the beat wave:

beat wave

refractive
index 

modulation

Ibeat = |E0+E1|
2

 = [1-ne/nc]
1/2

b=2/|kb|   (kb=k0-k1)

THEORY
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E1∥
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“pump” 
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k1

“probe”

E0

The refractive index modulation can alter both the amplitude 
and phase of the probe beam

The refractive index perturbation δη is complex:

• Im[δη] : exponential growth/decay vs. z (energy transfer with the pump)

refractive index: 
η = η0 + δη

0 0+kbcs0-kbcs

0


Im[]

1

THEORY

1=0±kbcs: beat wave 
resonantly drives an ion-
acoustic wave (IAW)

Alters the probe beam 
amplitude (foundation of 
CBET on the NIF)
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E1

E1∥

E1⊥

“pump” 

k0

k1

“probe”

E0

The refractive index modulation can alter both the amplitude 
and phase of the probe beam

The refractive index perturbation δη is complex:

• Im[δη] : exponential growth/decay vs. z (energy transfer with the pump)

• Re[δη] : change in average refractive index seen by the probe, η0  η0+Re[δη] 

Im[δη] ↔ Re[δη]
(Kramers-Kronig)

refractive index: 
η = η0 + δη

0 0+kbcs0-kbcs

0


Im[]
Re[]

1

THEORY

Alters the probe 
beam phase
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The refractive index perturbation δη is only experienced by the 
probe’s E-field component parallel to the pump’s E-field

The [pump + plasma] optical system is optically anisotropic

p1

s1
0

E1

E1//

E1⊥

unchanged× exp[ik0L/0]

0 = projection 
of E0 in (p1, s1) 

s1

p1

y
z

x

E0

E1


Geometry for arbitrary polarizations: Probe’s plane of polarization:

“pump”

“probe”

THEORY
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An interesting limiting case involves pure birefringence 
without any energy transfer 

The implication is that a [pump+plasma] system can be used as a tunable waveplate

0 0+kbcs0-kbcs

0


Im[]
Re[]

1

p1

s1

slow axis (∥0)

E1

E1//

E1⊥

fast axis 
(⊥0)

E1∥ : slow=+
E1⊥ : fast=

The phase delay 
∝ LIpumpne/Te

can be easily 
tuned by varying 
these parameters

THEORY

P. Michel, L. Divol, D. Turnbull, & J. D. Moody, Phys. Rev. Lett. 102, 205001 (2014)
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 We recently proposed1 that a [pump + plasma] 
optical system can alter the polarization of a 
crossing probe beam
— Introduced “plasma photonics” concepts 

(laser-plasma waveplates/polarizers) 

 An ultrafast high-power tunable plasma 
waveplate has been demonstrated at JLF2

 Wavelength tuning (new capability!) will enable 
the plasma polarizer & other expts on 4-wave 
mixing and crossed-beam energy transfer

Plasma photonics is the manipulation of light using plasma, at 
fluences beyond the damage threshold of conventional optics

2D. Turnbull et al, in preparation (2016)

Δϕ0=38.1° Δϕ =90.3°

THEORY

JLF
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k0

a1

L≈ Dpump/sin(Ψ)a0

k1
Ψ

polarimetry

Mach-Zehnder
interferometry

Thomson 
scattering

A JLF campaign was conducted to validate the theory and 
demonstrate a laser-plasma waveplate

JLF
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k0
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L≈ Dpump/sin(Ψ)a0

k1
Ψ

polarimetry

Mach-Zehnder
interferometry

Thomson 
scattering

A JLF campaign was conducted to validate the theory and 
demonstrate a laser-plasma waveplate

λ0 = λ1 = 1.053μm
D0 = 600μm
L ≈ 1.2mm

I0 ≈ 2 – 10 [1013 W/cm2]
ne/nc ≈ .7 – 3.3%
Te ≈ 180 – 380eV

JLF
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k0

a1

L≈ Dpump/sin(Ψ)a0

k1
Ψ

polarimetry

Mach-Zehnder
interferometry

Thomson 
scattering

A JLF campaign was conducted to validate the theory and 
demonstrate a laser-plasma waveplate

λ0 = λ1 = 1.053μm
D0 = 600μm
L ≈ 1.2mm Ionizes gas and sets plasma conditions

Time of probe, TS analysis, & interferometry beam

I0 ≈ 2 – 10 [1013 W/cm2]
ne/nc ≈ .7 – 3.3%
Te ≈ 180 – 380eV

The crucial parameters – I0, ne, Te, interaction length L– were carefully controlled/measured

JLF
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Elliptical probe was converted to a nearly ideal circularly 
polarized beam by inducing a 52° phase delay in plasma

Probe
Wollaston prism

U45°

U135°

U135°/U45° ≈ .11

Phase delay 
Δϕ0=38.1°

JLF
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Elliptical probe was converted to a nearly ideal circularly 
polarized beam by inducing a 52° phase delay in plasma

Probe
Wollaston prism

U45°

U135°

Laser-plasma waveplate

U135°/U45° ≈ .11 U135°/U45° ≈ 1.01

Pump

Phase delay 
Δϕ0=38.1° Δϕ =90.2°

JLF
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Elliptical probe was converted to a nearly ideal circularly 
polarized beam by inducing a 52° phase delay in plasma

Probe
Wollaston prism

U45°

U135°

Laser-plasma waveplate Quartz λ/4 waveplate

U135°/U45° ≈ .11 U135°/U45° ≈ 1.01 U135°/U45° ≈ 54.3

Pump

Phase delay 
Δϕ0=38.1° Δϕ =90.2° Δϕ ≈180°

JLF
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Elliptical probe was converted to a nearly ideal circularly 
polarized beam by inducing a 52° phase delay in plasma

Probe
Wollaston prism

U45°

U135°

Laser-plasma waveplate Quartz λ/4 waveplate

U135°/U45° ≈ .11 U135°/U45° ≈ 1.01 U135°/U45° ≈ 54.3

Pump

Phase delay 
Δϕ0=38.1° Δϕ =90.2°

This is the first demonstration of a near-ideal tunable laser-plasma waveplate

Δϕ ≈180°

JLF
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Data in excellent agreement with linear theory at moderate 
intensity and density

Observed: 

Predicted: 

Results validate the theory in [Michel et al, PRL, 2014] in the weak-coupling regime of SBS
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pF3D simulations capture the trends observed in the data 

JLF

Simulations by T. Chapman
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pF3D simulations capture the trends observed in the data 

JLF

Simulations by T. Chapman



LLNL-PRES-xxxxxx
24

pF3D simulations capture the trends observed in the data 

JLF
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pF3D simulations capture the trends observed in the data 

JLF

Simulations by T. Chapman
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pF3D simulations capture the trends observed in the data 

JLF

Simulations by T. Chapman
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pF3D indicates 
significant energy 
transfer in strong-
coupling regime of 
SBS when γ/kcs≈1
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pF3D simulations capture the trends observed in the data 

JLF

Simulations by T. Chapman
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pF3D indicates 
significant energy 
transfer in strong-
coupling regime of 
SBS when γ/kcs≈1

Limits are understood, and pF3D is a predictive design tool
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 We recently proposed theoretically1 that a 
[pump + plasma] optical system can alter the 
polarization of a crossing probe beam
— Introduced “plasma photonics” concepts 

(laser-plasma waveplates/polarizers) 

 An ultrafast high-power tunable plasma 
waveplate has been demonstrated at JLF2

 Wavelength tuning (new capability!) will enable 
the plasma polarizer & other expts on 4-wave 
mixing and crossed-beam energy transfer

Plasma photonics is the manipulation of light using plasma, at 
fluences beyond the damage threshold of conventional optics

THEORY

JLF
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We requested wavelength tuning capability, which will enable 
many new and exciting experiments

0 0+kbcs0-kbcs

0



1

0 0+kbcs0-kbcs

0



1

“pump” 

“probe”

refractive index: 
η = η0 + δη

Plasma 
polarizer

“pump” 

“probe”

refractive index: 
η = η0 + δη

CBET 
saturation

April - Turnbull May - Goyon

Im[]
Re[]

pumps (create 
dielectric grating)

Four-wave 
mixing

Both expts supported by 
P. Michel’s new LDRD



LLNL-PRES-xxxxxx
30

 We recently proposed1 that a [pump + plasma] 
optical system can alter the polarization of a 
crossing probe beam
— Introduced “plasma photonics” concepts 

(laser-plasma waveplates/polarizers) 

 An ultrafast high-power tunable plasma 
waveplate has been demonstrated at JLF2

 Wavelength tuning (new capability!) will enable 
the plasma polarizer & other expts on 4-wave 
mixing and crossed-beam energy transfer

Plasma photonics is the manipulation of light using plasma, at 
fluences beyond the damage threshold of conventional optics

2D. Turnbull et al, in preparation (2016)
1P. Michel, L. Divol, D. Turnbull, & J. D. Moody, Phys. Rev. Lett. 102, 205001 (2014)

“pump” 

“probe”

refractive index: 
η = η0 + δη

Δϕ0=38.1° Δϕ =90.3°

THEORY

JLF





LLNL-PRES-xxxxxx
32

Theory developed for arbitrary polarizations is relevant to 
incident beam propagation in NIF hohlraums

y
z

x

E0

E1

“pump”

“probe” Crossed-Beam Energy 
Transfer (CBET)

ϴΦ

30°

50°

180°

270°

Linear theory validated in 
weak-coupling regime for 
two beams in well-
diagnosed plasma 

Polarization arrangement

NIF
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We can measure the polarization of SBS backscatter, which is 
imprinted with the effect of crossed beam interactions

Crossed-Beam Energy 
Transfer (CBET)

Incident 
polarization

Backscatter 
polarization 
after CBET

Polarization arrangement

ϴΦ

30°

50°

180°

270°

B316

NIF


